Appearance
设数列若当时且则设数列{xn},{yn},{zn},若∃N∈N,当n>N时,zn≤xn≤yn,且limn→∞zn=limn→∞yn=A则limn→∞xn=A
设数列若当时且则设数列{xn},{yn},若∃N∈N,当n>N时,0≤xn≤yn,且limn→∞yn=0则limn→∞xn=0
若数列{xn}单调增加(减少)且有上界(下界),则{xn}收敛
e=limn→∞(1+1n)n
若且有则存在唯一实数有换言之若[an+1,bn+1]⊂[an,bn],∀n∈N+,且有limn→∞(bn−an)=0则存在唯一实数ξ,∀n∈N+,有an≤ξ≤bn,换言之,ξ∈⋂n=1∞[an,bn]
![[2023-09-22 例题5 压缩映像原理]]